Login / Signup

Two Are Better than One: Halloysite Nanotubes-Supported Surface Imprinted Nanoparticles Using Synergy of Metal Chelating and Low pKa Boronic Acid Monomers for Highly Specific Luteolin Binding under Neutral Condition.

Shucheng LiuJinxin LiuJianming PanJialu LuoXiangheng NiuTao ZhangFengxian Qiu
Published in: ACS applied materials & interfaces (2017)
Surface-imprinted nanoparticles with double recognition (DM-MIPs) are fabricated onto halloysite nanotubes (HNTs) for highly specific separation of natural flavone luteolin (LTL) under neutral condition. Specifically, a two-step strategy via consecutive surface-initiated atom transfer radical polymerization (SI-ATRP) is employed to introduce inherent recognition of molecular imprinting and reversible covalent affinity of boronic acid ligands and immobilized Zn2+ into DM-MIPs. First, Zn2+-immobilized poly(vinyl imidazole) (PVLD) shell based on the HNTs via the first SI-ATRP is prepared to capture LTL by metal chelating. Then HNTs-supported surface imprinted nanoparticles are prepared using low pKa boronic acid monomer 4-(2-acrylamidoethylcarbamoyl)-3-fluorophenylboronic acid (AMC-FPBA) via the second SI-ATRP. Taking advantage of low apparent pKa of AMC-FPBA and large high-affinity binding site density, DM-MIPs possess a promising binding with cis-diol-containing LTL under neutral condition. In static adsorption, DM-MIPs show large LTL loading amount (83.42 mg g-1), fast capture kinetics, remarkable selectivity, and excellent recyclability at pH = 7.0. More importantly, by reducing the pH to 4.0, the loaded TLL can be simply released. As a proof of this concept, a commercially available LTL with 85% purity can be easily enriched and further purified, and the product exhibits the similar antibacterial performance with standard substance.
Keyphrases