Login / Signup

Synthesis, Simulation, and Self-Assembly of a Model Amphiphile To Push the Limits of Block Polymer Nanopatterning.

Leonel BarredaZhengyuan ShenQile P ChenTimothy P LodgeJ Ilja SiepmannMarc A Hillmyer
Published in: Nano letters (2019)
Efforts to create block-polymer-based templates with ultrasmall domain sizes has stimulated integrated experimental and theoretical work in an effort to design and prepare self-assembled systems that can achieve unprecedented domain sizes. We recently reported the utilization of molecular dynamics simulations with transferable force fields to identify amphiphilic oligomers capable of self-assembling into ordered layered and cylindrical morphologies with sub-3 nm domain sizes. Motivated by these predictions, we prepared a sugar-based amphiphile with a hydrocarbon tail that shows thermotropic self-assembly to give a lamellar mesophase with a 3.5 nm pitch and sub-2 nm nanodomains above the melting temperature and below the liquid-crystalline clearing temperature. Complementary atomistic simulations of the molecular assemblies gave morphologies and spacings that were in near-perfect agreement with the experimental results. The effective combination of molecular design, simulation, synthesis, and structural characterization demonstrates the power of this integrated approach for next-generation templating technologies.
Keyphrases