Login / Signup

An intense electrical stimulus can elicit a StartReact effect but with decreased incidence and later onset of the startle reflex.

Elias DaherDana MaslovatAnthony N Carlsen
Published in: Experimental brain research (2024)
Planned actions can be triggered involuntarily by a startling acoustic stimulus (SAS), resulting in very short reaction times (RT). This phenomenon, known as the StartReact effect, is thought to result from the startle-related activation of reticular structures. However, other sensory modalities also can elicit a reflexive startle response. Here, we assessed the effectiveness of an intense startling electric stimulus (SES) in eliciting the StartReact effect as compared to a SAS. We tested SES intensities at 15 and 25 times the perceptual threshold of each participant, as well as SAS intensities of 114 dB and 120 dB. The electrical stimulation electrodes were placed over short head of the biceps brachii on the arm not involved in the task. Intense electric and acoustic stimuli were presented on 20% of the trials in a simple RT paradigm requiring a targeted ballistic wrist extension movement. The proportion of trials showing short latency (≤ 120 ms) startle reflex-related activation in sternocleidomastoid was significantly lower on intense electrical stimulus trials compared to intense acoustic trials, and the startle response onset occurred significantly later on SES trials compared to SAS. However, when a startle reflex was observed, RTs related to the prepared movement were facilitated to a similar extent for both SES and SAS conditions, suggesting that the accelerated response latency associated with the StartReact effect is independent of stimulus type.
Keyphrases
  • risk factors
  • spinal cord injury
  • mass spectrometry
  • high resolution
  • drug induced
  • reduced graphene oxide