Login / Signup

Ultrafast Nonlinear Optical and Structure-Property Relationship Studies of Pyridine-Based Anthracene Chalcones Using Z-Scan, Degenerate Four-Wave Mixing, and Computational Approaches.

Shivaraj R MaidurParutagouda Shankaragouda PatilNaga Krishnakanth KatturiVenugopal Rao SQin Ai WongChing Kheng Quah
Published in: The journal of physical chemistry. B (2021)
The structural, thermal, linear, and femtosecond third-order nonlinear optical (NLO) properties of two pyridine-based anthracene chalcones, (2E)-1-(anthracen-9-yl)-3-(pyridin-2-yl)prop-2-en-1-one (2PANC) and (2E)-1-(anthracen-9-yl)-3-(pyridin-3-yl)prop-2-en-1-one (3PANC), were investigated. These two chalcones were synthesized following the Claisen-Schmidt condensation method. Optically transparent single crystals were achieved using a slow evaporation solution growth technique. The presence of functional groups in these molecules was established by Fourier transform infrared and NMR spectroscopic data. The detailed solid-state structure of both chalcones was determined from the single-crystal X-ray diffraction data. Both crystals crystallized in the centrosymmetric triclinic space group P1̅ with the nuance of unit cell parameters. The crystals (labeled as 2PANC and 3PANC) have been found to be transparent optically [in the entire visible spectral region] and were found to be thermally stable up to 169 and 194 °C, respectively. The intermolecular interactions were investigated using the Hirshfeld surface analysis, and the band structures (highest occupied molecular orbital-lowest unoccupied molecular orbital, excited-state energies, global chemical reactivity descriptors, and molecular electrostatic potentials) were studied using density functional theory (DFT) techniques. The ultrafast third-order NLO properties were investigated using (a) Z-scan and (b) degenerate four-wave mixing (DFWM) techniques using ∼50 fs pulses at 800 nm (1 kHz, ∼4 mJ) from a Ti:sapphire laser amplifier. Two-photon-assisted reverse saturable absorption, self-focusing nonlinear refraction, optical limiting, and optical switching behaviors were witnessed from the Z-scan data. 3PANC demonstrated a stronger two-photon absorption coefficient, while 2PANC depicted a stronger nonlinear refractive index among the two. The time-resolved DFWM data demonstrated that the decay times of 2PANC and 3PANC were ∼162 and ∼180 fs, respectively. The second hyperpolarizability (γ) values determined by DFT, Z-scan, and DFWM were found to be in good correlation (with a magnitude of ∼10-34 esu). The ultrafast third-order NLO response, significant NLO properties, and thermal stability of these chalcones brands them as potential candidates for optical power limiting and switching applications.
Keyphrases