Login / Signup

Cell trapping in Y-junction microchannels: A numerical study of the bifurcation angle effect in inertial microfluidics.

Scott J HymelHongzhi LanHideki FujiokaDamir B Khismatullin
Published in: Physics of fluids (Woodbury, N.Y. : 1994) (2019)
The majority of microfluidic technologies for cell sorting and isolation involve bifurcating (e.g., Y- or T-shaped junction) microchannels to trap the cells of a specific type. However, the microfluidic trapping efficiency remains low, independently of whether the cells are separated by a passive or an active sorting method. Using a custom computational algorithm, we studied the migration of separated deformable cells in a Y-junction microchannel, with a bifurcation angle ranging from 30° to 180°. Single or two cells of initially spherical shape were considered under flow conditions corresponding to inertial microfluidics. Through the numerical simulation, we identified the effects of cell size, cytoplasmic viscoelasticity, cortical tension, flow rate, and bifurcation angle on the critical separation distance for cell trapping. The results of this study show that the trapping and isolation of blood cells, and circulating tumor cells in a Y-junction microchannel was most efficient and least dependent on the flow rate at the bifurcation angle of 120°. At this angle, the trapping efficiency for white blood cells and circulating tumor cells increased, respectively, by 46% and 43%, in comparison with the trapping efficiency at 60°. The efficiency to isolate invasive tumor cells from noninvasive ones increased by 32%. This numerical study provides important design criteria to optimize microfluidic technology for deformability-based cell sorting and isolation.
Keyphrases