Login / Signup

Self-Assembled Protein Nanostructures via Irreversible Peptide Assembly.

Euimin HwangYong-Beom Lim
Published in: ACS macro letters (2023)
The quaternary structure of proteins extends the functionality of monomeric proteins. Similarly, self-assembled protein nanostructures (SPrNs) have great potential to improve the functionality and complexity of proteins; however, the difficulty associated with the fabrication of SPrNs is far greater than that associated with the fabrication of self-assembled peptides or polymers and often requires sophisticated computational design. To make the process of SPrN formation simpler and more intuitive, herein, we devise a strategy to adopt an irreversible self-assembled peptide nanostructure (SPeN) process en route to the formation of SPrNs. The strategy employs three sequential steps: first, the formation of SPeNs (an equilibrium process); second, covalent capture of SPeNs (an irreversible process); third, the final assembly of SPrNs via protein-peptide interactions (an equilibrium process). This strategy allowed us to fabricate SPrNs in which the size of the protein was approximately 9 times higher than that of the self-assembling peptide. Furthermore, we demonstrated that the irreversible SPeN could be used as a primary building block for assembly into superstructures. Overall, this strategy is conceptually as simple as SPeN fabrication and is potentially applicable to any soluble protein.
Keyphrases
  • amino acid
  • protein protein
  • binding protein
  • molecular dynamics
  • molecular dynamics simulations
  • risk assessment
  • small molecule
  • human health