Login / Signup

Two energy barriers and a transient intermediate state determine the unfolding and folding dynamics of cold shock protein.

Haiyan HongZilong GuoHao SunPing YuHuanhuan SuXuening MaHu Chen
Published in: Communications chemistry (2021)
Cold shock protein (Csp) is a typical two-state folding model protein which has been widely studied by biochemistry and single molecule techniques. Recently two-state property of Csp was confirmed by atomic force microscopy (AFM) through direct pulling measurement, while several long-lifetime intermediate states were found by force-clamp AFM. We systematically studied force-dependent folding and unfolding dynamics of Csp using magnetic tweezers with intrinsic constant force capability. Here we report that Csp mostly folds and unfolds with a single step over force range from 5 pN to 50 pN, and the unfolding rates show different force sensitivities at forces below and above ~8 pN, which determines a free energy landscape with two barriers and a transient intermediate state between them along one transition pathway. Our results provide a new insight on protein folding mechanism of two-state proteins.
Keyphrases
  • single molecule
  • atomic force microscopy
  • living cells
  • protein protein
  • amino acid
  • binding protein
  • molecular dynamics simulations
  • simultaneous determination