Login / Signup

Why Is It So Difficult to Identify the Onset of Ice Premelting?

Yuqing QiuValeria Molinero
Published in: The journal of physical chemistry letters (2018)
Premelting of ice at temperatures below 0 °C is of fundamental importance for environmental processes. Various experimental techniques have been used to investigate the temperature at which liquid-like water first appears at the ice-vapor interface, reporting onset temperatures from -160 to -2 °C. The signals that identify liquid-like order at the ice-vapor interface in these studies, however, do not show a sharp initiation with temperature. That is at odds with the expected first-order nature of surface phase transitions, and consistent with recent large-scale molecular simulations that show the first premelted layer to be sparse and to develop continuously over a wide range of temperatures. Here we perform a thermodynamic analysis to elucidate the origin of the continuous formation of the first layer of liquid at the ice-vapor interface. We conclude that a negative value of the line tension of the ice-liquid-vapor three-phase contact line is responsible for the continuous character of the transition and the sparse nature of the liquid-like domains in the incomplete first layer.
Keyphrases
  • ionic liquid
  • molecular dynamics
  • neural network
  • single molecule