A Smart Photochromic Semiconductor: Breaking the Intrinsic Positive Relation Between Conductance and Temperature.
Cai SunXiao-Qing YuMing-Sheng WangGuo-Cong GuoPublished in: Angewandte Chemie (International ed. in English) (2019)
Breaking the intrinsic rule of semiconductors that conductivity increases with increase of temperature and realizing a dramatic dropping of conductivity at high temperature may arouse new intriguing applications, such as circuit overload or over-temperature protecting. This goal has now been achieved through T-type electron-transfer photochromism of one organic semiconductor assembled by intermolecular cation⋅⋅⋅π interactions. Conductivity of the viologen-based model semiconductor (H2 bipy)(Hox)2 (H2 bipy=4,4'-bipyridin-1,1'-dium; ox=oxalate) increased by 2 orders of magnitude after photoinduced electron transfer (a record for photoswitchable organic semiconductors) and generation of radical cation⋅⋅⋅π interactions, and fell by approximately 81 % at 100 °C through reverse electron transfer and degeneration of the radical cation⋅⋅⋅π interactions. The model semiconductor has at least two different electron transfer pathways in the decoloration process.