Login / Signup

Molecular Modeling of Surfactant Micellization Using Solvent-Accessible Surface Area.

Hsieh ChenAthanassios Z Panagiotopoulos
Published in: Langmuir : the ACS journal of surfaces and colloids (2019)
We report a new implicit solvent simulation model for studying the self-assembly of surfactants, where the hydrophobic interactions were captured by calculating the relative changes of the solvent-accessible surface area (SASA) of the hydrophobic domains. Using histogram-reweighting grand canonical Monte Carlo simulations, we demonstrate that this approach allows us to match both the experimental critical micelle concentrations (cmc) and micellar aggregation numbers simultaneously with a single phenomenological surface tension γSASA for the poly(oxyethylene) monoalkyl ether (C mE n) surfactants in aqueous solutions. Excellent transferability is observed: the same model can accurately predict the experimental cmc and aggregation numbers for the C mE n surfactants with the alkyl lengths m between 6 and 12 and the poly(oxyethylene) lengths n between 1 and 9. The SASA-based implicit solvent model put forward in this work is general and may be applied to study more complex amphiphilic systems such as surfactants with branched alkyl chains or surfactant-hydrocarbon mixtures.
Keyphrases
  • ionic liquid
  • monte carlo
  • molecular dynamics
  • magnetic resonance imaging
  • contrast enhanced
  • virtual reality
  • visible light