Login / Signup

Corn Stunt Pathosystem and Its Leafhopper Vector in Brazil.

Henrique PozebonGlauber Renato StürmerJonas André Arnemann
Published in: Journal of economic entomology (2022)
Direct and indirect injury caused by Dalbulus maidis (Hemiptera: Cicadellidae) in corn is an ever-increasing concern in Brazil and other corn-producing countries of the Americas. This highly efficient vector transmits corn stunting pathogens and is of economic concern in the Neotropics, including temperate regions where epidemic outbreaks are now common. Despite the progress made so far, Brazilian corn growers continue to struggle with this pest and its associated pathosystem. In this review, we gathered relevant and updated information on the bioecology, population dynamics, and damaging potential of D. maidis. Our goal was to better understand its intimate association and complex interactions with the host crop and transmitted pathogens. Based on available scientific literature, we identified factors which explain the recent increase in D. maidis occurrence in South America, including the cultivation of corn during multiple growing seasons, overlapping of susceptible crops, and widespread use of genetically modified hybrids. The reasons for the overall inefficiency of current suppression strategies aimed at this pest are also summarized. Finally, a management program for D. maidis and corn stunt disease is proposed, combining strategies such as eradicating volunteer corn, reducing the planting period, using tolerant hybrids, and applying chemical and/or fungal insecticides. Prospects regarding the pest's status are also outlined. Overall, the information presented here will serve as a decision-making guide within Brazilian and South American corn production systems, as well as paving the way for devising novel strategies aimed at suppressing D. maidis populations and limiting the spread of corn stunt disease.
Keyphrases
  • highly efficient
  • decision making
  • systematic review
  • risk assessment
  • healthcare
  • quality improvement
  • climate change
  • signaling pathway
  • zika virus
  • human health
  • aedes aegypti