Login / Signup

The extracellular calcium-sensing receptor promotes porcine egg activation via calcium/calmodulin-dependent protein kinase II.

Cong LiuHuage LiuYan LuoTengfei LuXiangwei FuSheng CuiShien ZhuHongmei Hu
Published in: Molecular reproduction and development (2020)
Extracellular calcium is required for intracellular Ca2+ oscillations needed for egg activation, but the regulatory mechanism is still poorly understood. The present study was designed to demonstrate the function of calcium-sensing receptor (CASR), which could recognize extracellular calcium as first messenger, during porcine egg activation. CASR expression was markedly upregulated following egg activation. Functionally, the addition of CASR agonist NPS R-568 significantly enhanced pronuclear formation rate, while supplementation of CASR antagonist NPS2390 compromised egg activation. There was no change in NPS R-568 group compared with control group when the egg activation was performed without extracellular calcium addition. The addition of NPS2390 precluded the activation-dependent [Ca2+ ]i rise. When egg activation was conducted in intracellular Ca2+ chelator BAPTA-AM and NPS R-568 containing medium, CASR function was abolished. Meanwhile, CASR activation increased the level of the [Ca2+ ]i effector p-CAMKII, and the presence of KN-93, an inhibitor of CAMKII, significantly reduced the CASR-mediated increasement of pronuclear formation rate. Furthermore, the increase of CASR expression following activation was reversed by inhibiting CAMKII activity, supporting a positive feedback loop between CAMKII and CASR. Altogether, these findings provide a new pathway of egg activation about CASR, as the extracellular Ca2+ effector, promotes egg activation via its downstream effector and upstream regulator CAMKII.
Keyphrases
  • transcription factor
  • regulatory t cells
  • reactive oxygen species