Login / Signup

Phylogenomic assessment prompts recognition of the Serianthes clade and confirms the monophyly of Serianthes and its relationship with Falcataria and Wallaceodendron in the wider ingoid clade (Leguminosae, Caesalpinioideae).

Else DemeulenaereTom SchilsJ Gordon BurleighJens J RingelbergErik Jozef Mathieu KoenenStefanie M Ickert-Bond
Published in: PhytoKeys (2022)
The Indo-Pacific legume genus Serianthes was recently placed in the Archidendron clade (sensu Koenen et al. 2020), a subclade of the mimosoid clade in subfamily Caesalpinioideae, which also includes Acacia , Archidendron , Archidendropsis , Falcataria , Pararchidendron , Paraserianthes and Wallaceodendron . Serianthes comprises ca. 18 species, five subspecies and two varieties that are characterised by bipinnately compound leaves with alternate sessile leaflets, branched axillary corymbiform panicles and woody indehiscent pods. Generic relationships, as well as species relationships within genera in the Archidendron clade, remain uncertain. While the sister relationship between Serianthes and the genus Falcataria is strongly supported by molecular data, the distinction between Serianthes and the monotypic genus Wallaceodendron has been questioned, based on their similar flower and fruit morphologies. We combined three gene-enriched hybrid capture DNA sequence datasets (generated from the 964 mimobaits v1 probe set, the expanded 997 mimobaits v2 probe set and the GoFlag angiosperm 408 probe set) and used their overlapping markers (77 loci of the target exonic and flanking regions) to test the monophyly of Serianthes and to investigate generic relationships within the Archidendron clade using 55 ingoid plus two outgroup taxa. We show that Serianthes is monophyletic, confirm the Serianthes + Falcataria sister relationship to Wallaceodendron and recognise this combined clade as the Serianthes clade within the Archidendron clade. We also evaluated the use of overlapping loci across datasets in combination with concordance analyses to test generic relationships and further investigate previously unresolved relationships across the wider ingoid clade. Concordance analysis revealed limited gene tree conflicts near the tips of the Archidendron clade, but increased discordance at the base of the clade, which could be attributed to rapid lineage divergence (radiation) and/or incomplete lineage sorting.
Keyphrases