Preparatory activity links the frontal eye field response with small amplitude motor unit recruitment of neck muscles during gaze planning.
Satya RungtaDebaleena BasuNaveen SendhilnathanAditya MurthyPublished in: Journal of neurophysiology (2021)
A hallmark of intelligent behavior is that we can separate intention from action. To understand the mechanism that gates the flow of information between motor planning and execution, we compared the activity of frontal eye field neurons with motor unit activity from neck muscles in the presence of an intervening delay period in which spatial information regarding the target was available to plan a response. Although spatially specific delay period activity was present in the activity of frontal eye field neurons, it was absent in motor unit activity. Nonetheless, motor unit activity was correlated with the time it took to initiate saccades. Interestingly, we observed a heterogeneity of responses among motor units, such that only units with smaller amplitudes showed a clear modulation during the delay period. These small amplitude motor units also had higher spontaneous activity compared with the units which showed modulation only during the movement epoch. Taken together, our results suggest the activity of smaller motor units convey temporal information and explains how the delay period primes muscle activity leading to faster reaction times.NEW & NOTEWORTHY This study shows that the temporal aspects of a motor plan in the oculomotor circuitry can be accessed by peripheral neck muscles hundreds of milliseconds before the instruction to initiate a saccadic eye movement. The coupling between central and peripheral processes during the delay time is mediated by the recruitment pattern of motor units with smaller amplitude. These findings suggest that information processed in cortical areas could be read from periphery before execution.