Login / Signup

Influence of light regulation on growth and enzyme production in rare endolichenic fungi.

Peck Ting GanYau Yan LimAdeline Su Yien Ting
Published in: Folia microbiologica (2023)
The influence of light regulation on the growth and enzyme production of three endolichenic fungal isolates, i.e. Pseudopestalotiopsis theae (EF13), Fusarium solani (EF5), and Xylaria venustula (PH22), was determined. The isolates were exposed to blue, red, green, yellow, white fluorescent light (12 h light-12 h dark photoperiod) (test), and 24 h dark (control) conditions. Results revealed that the alternating light-dark conditions resulted in the formation of dark rings in most fungal isolates but was absent in PH22. Red light induced sporulation while yellow light elicited higher biomass in all isolates (0.19 ± 0.01 g, 0.07 ± 0.00 g, and 0.11 ± 0.00 g, for EF13, PH22, and EF5, respectively) as compared to incubation in the dark. Results also showed that blue light induced higher amylase activity in PH22 (15.31 ± 0.45 U/mL) and L-asparaginase activity in all isolates (0.45 ± 0.01 U/mL, 0.55 ± 0.39 U/mL, and 0.38 ± 0.01 U/mL, for EF13, PH22, and EF5, respectively) compared to both control conditions. Green light enhanced the production of xylanase (6.57 ± 0.42 U/mL, 10.64 ± 0.12 U/mL, and 7.55 ± 0.56 U/mL for EF13, PH22, and EF5, respectively) and cellulase (6.49 ± 0.48 U/mL, 9.57 ± 0.25 U/mL, and 7.28 ± 0.63 U/mL, for EF13, PH22, and EF5, respectively). In contrast, red light was the least effective light treatment as production of enzymes was the least, with lower levels of amylase, cellulase, xylanase, and L-asparaginase detected. To conclude, all three endolichenic fungi are light-responsive, with fungal growth regulated with the use of red light and yellow light, and manipulation of enzyme production via blue and green light.
Keyphrases
  • magnetic resonance imaging
  • transcription factor
  • drug delivery
  • contrast enhanced