Study on the impact of photoaging on the generation of very small microplastics (MPs) and nanoplastics (NPs) and the wettability of plastic surface.
Zike HuangHui WangPublished in: Environmental science and pollution research international (2023)
Photoaging is one of the important reasons for the sharp increase of waste plastics, especially microplastics (MPs), in the environment. Therefore, studying the photoaging of plastics is of great significance for controlling plastic pollution from the source. Nevertheless, there are few studies on plastic photoaging from the perspective of polymer structure. Besides, the capacity of different types of plastics to generate MPs with small particle size is relatively little studied. In view of this, we conducted a preliminary study on the capacity of different types of plastics to generate MPs using flow cytometry. We also studied the impact of photoaging on different types of plastics. The results showed that flow cytometry can be used to quantify very small MPs (1-50 μm) and nanoplastics (NPs) (< 1 μm). Furthermore, photoaging often accelerates the generation of MPs and roughens plastic surface. Besides, photoaging can introduce some oxygen-containing groups onto plastic surface, thereby changing the wettability of plastic surface. Moreover, benzene rings in polymer structures may inhibit the generation of MPs but may promote the transformation of the plastic surface from hydrophobic to hydrophilic during photoaging. Although the changes in properties of plastics caused by photoaging have adverse effects on the environment, some new processes and materials still can be developed based on photoaging of plastics. This work contributes to a better understanding of the photoaging of plastics from the perspective of polymer structure, which has certain positive significance for controlling plastic pollution from the source.