Aminated Polysaccharide-Based Nanoassemblies as Stable Biocompatible Vehicles Enabling Crossing of Biological Barriers: An Effective Transdermal Delivery of Diclofenac Medicine.
Yael CohenRoi RutenbergGuy CohenBoris VeltmanRaanan GvirtzElazar FallikDganit DaninoEvgeni EltzovElena PoverenovPublished in: ACS applied bio materials (2020)
A series of stable polysaccharide derivatives that spontaneously self-assemble into nanocarriers was synthesized by applying a reductive amination on chitosan. The prepared nanocarriers were comprehensively studied and found to allow encapsulation of molecular cargo in both aqueous and lipidic media and deliver this cargo across biological barriers. The nanocarriers have demonstrated effective transdermal delivery of diclofenac (Voltaren), a nonsteroidal anti-inflammatory drug, by increasing its skin permeation up to 100 vs the tested control. The modified polysaccharides were studied with a panel of three types of bioreporter bacteria sensitive to genotoxic and cytotoxic stresses. These studies showed the general safety of the prepared nanocarriers and provided insights concerning their activity in collaboration with the aliphatic side chain length. The described nanocarriers could be applied as tunable biocompatible vehicles for the delivery of medicines, cosmetic agents, and in other applications.