Login / Signup

Functional Interactions Between Major Rice Blast Resistance Genes, Pi-ta and Pi-b, and Minor Blast Resistance Quantitative Trait Loci.

Xinglong ChenYulin JiaMelissa H JiaShannon R M PinsonXueyan WangBo Ming Wu
Published in: Phytopathology (2018)
Major blast resistance (R) genes confer resistance in a gene-for-gene manner. However, little information is available on interactions between R genes. In this study, interactions between two rice blast R genes, Pi-ta and Pi-b, and other minor blast resistance quantitative trait loci (QTLs) were investigated in a recombinant inbred line (RIL) population comprising 243 RILs from a Cybonnet (CYBT) × Saber (SB) cross. CYBT has the R gene Pi-ta and SB has Pi-b. Ten differential isolates of four Magnaporthe oryzae races (IB-1, IB-17, IB-49, and IE-1K) were used to evaluate disease reactions of the 243 RILs under greenhouse conditions. Five resistance QTLs were mapped on chromosomes 2, 3, 8, 9, and 12 with a linkage map of 179 single nucleotide polymorphism markers. Among them, qBR12 (Q1), was mapped at the Pi-ta locus and accounted for 45.41% of phenotypic variation while qBR2 (Q2) was located at the Pi-b locus and accounted for 24.81% of disease reactions. The additive-by-additive epistatic interaction between Q1 (Pi-ta) and Q2 (Pi-b) was detected; they can enhance the disease resistance by an additive 0.93 using the 0 to 9 standard phenotyping method. These results suggest that Pi-ta interacts synergistically with Pi-b.
Keyphrases
  • high density
  • genome wide
  • genome wide identification
  • dna methylation
  • copy number
  • mass spectrometry
  • genome wide analysis
  • hepatitis c virus
  • hiv infected
  • cell free
  • atomic force microscopy