Login / Signup

Chalcone Based Homodimeric PET Agent, 11C-(Chal)2DEA-Me, for Beta Amyloid Imaging: Synthesis and Bioevaluation.

Kanchan ChauhanAnjani K TiwariNidhi ChadhaAnkur KaulAjai Kumar SinghAnupama Datta
Published in: Molecular pharmaceutics (2018)
Homodimeric chalcone based 11C-PET radiotracer, 11C-(Chal)2DEA-Me, was synthesized, and binding affinity toward beta amyloid (Aβ) was evaluated. The computational studies revealed multiple binding of the tracer at the recognition sites of Aβ fibrils. The bivalent ligand 11C-(Chal)2DEA-Me displayed higher binding affinity compared to the corresponding monomer, 11C-Chal-Me, and classical Aβ agents. The radiolabeling yield with carbon-11 was 40-55% (decay corrected) with specific activity of 65-90 GBq/μmol. A significant ( p < 0.0001) improvement in the binding affinity of 11C-(Chal)2DEA-Me with synthetic Aβ42 aggregates over the monomer, 11C-Chal-Me, demonstrates the utility of the bivalent approach. The PET imaging and biodistribution data displayed suitable brain pharmacokinetics of both ligands with higher brain uptake in the case of the bivalent ligand. Metabolite analysis of healthy ddY mouse brain homogenates exhibited high stability of the radiotracers in the brain with >93% intact tracer at 30 min post injection. Both chalcone derivatives were fluorescent in nature and demonstrated significant changes in the emission properties after binding with Aβ42. The preliminary analysis indicates high potential of 11C-(Chal)2DEA-Me as in vivo Aβ42 imaging tracer and highlights the significance of the bivalent approach to achieve a higher biological response for detection of early stages of amyloidosis.
Keyphrases