Login / Signup

The endocannabinoidome in human placenta: Possible contribution to the pathogenesis of preeclampsia.

João MaiaFabio Arturo IannottiFabiana PiscitelliBruno Miguel FonsecaAntónio BragaJorge BragaNatércia TeixeiraVincenzo Di MarzoGeorgina Correia-da-Silva
Published in: BioFactors (Oxford, England) (2023)
Preeclampsia (PE) was first reported thousands of years ago, yet there is still a shortage of biomarkers to determine the severity and type of PE. The importance of the expanded endocannabinoid system, or endocannabinoidome (eCBome), has emerged recently in placental physiology and pathology, though the potential alterations of the eCBome in PE have not been fully explored. Analysis by qRT-PCR using placental samples of normotensive and PE women demonstrate for the first time the presence of ABHD4, GDE1, and DAGLβ in both normotensive and PE placental tissues. Interestingly, NAPE-PLD, FAAH-1, DAGLα, MAGL, and ABHD6 mRNA levels were increased in the placental tissues of PE patients. Quantification in plasma and placental tissues showed a decrease for anandamide (AEA), N-oleoylethanolamine (OEA), and N-docosahexaenoylethanolamine (DHEA) in the placenta, accompanied only by a decrease in plasma levels of AEA. In addition, a strong negative correlation was obtained between OEA and the biomarker of PE, soluble fms-like tyrosine kinase-1. Given the inflammatory nature of PE and the anti-inflammatory role of OEA and DHEA, the decrease in the local levels of these mediators may underlie the inflammatory component of this pathology. Additionally, lower AEA levels in both placenta and plasma may contribute to the atypical alterations of the spiral arteries in PE due to the vasorelaxation effects of AEA. These results add new information to the role of the eCBome members in placental development, while also pointing to a potential role as biomarkers of PE.
Keyphrases
  • tyrosine kinase
  • endothelial cells
  • anti inflammatory
  • type diabetes
  • early onset
  • binding protein
  • polycystic ovary syndrome