Login / Signup

Anti-Toxoplasma gondii effect of lupane-type triterpenes from the bark of black alder (Alnus glutinosa) and identification of a potential target by reverse docking.

Pierre DarmeSandie Escotte-BinetJulien CordonnierSimon RemyJane HubertCharlotte SayaghNicolas BorieIsabelle VillenaLaurence Voutquenne-NazabadiokoManuel DauchezStéphanie BaudJean-Hugues RenaultDominique Aubert
Published in: Parasite (Paris, France) (2022)
Toxoplasmosis is a worldwide parasitosis that is generally benign. The infestation may pose a risk to immunocompromized patients and to fetuses when pregnant women have recently seroconverted. Current treatments have numerous side effects and chemoresistance is emerging, hence the need to find new anti-Toxoplasma gondii substances. This study focuses on the antiparasitic potential of lupane-type pentacyclic triterpenes isolated from the bark of black alder (Alnus glutinosa), as well as the hypothesis of their macromolecular target by an original method of reverse docking. Among the isolated triterpenes, betulone was the most active compound with an IC 50 of 2.7 ± 1.2 μM, a CC 50 greater than 80 μM, and a selectivity index of over 29.6. An additional study of the anti-T. gondii potential of commercially available compounds (betulonic acid methyl ester and betulonic acid) showed the important role of the C3 ketone function and the C28 oxidation level on the lupane-type triterpene in the antiparasitic activity since their IC 50 and CC 50 were similar to that of betulone. Finally, the most active compounds were subjected to the AMIDE reverse docking workflow. A dataset of 87 T. gondii proteins from the Protein Data Bank was created. It identified calcium-dependent protein kinase CDPK3 as the most likely target of betulin derivatives.
Keyphrases