The gastric mucosa of Atlantic salmon (Salmo salar) is abundant in highly active chitinases.
Matilde Mengkrog HolenTina Rise TuvengMatthew Peter KentGustav Vaaje-KolstadPublished in: FEBS open bio (2023)
Atlantic salmon (Salmo salar) possesses a genome containing 10 genes encoding chitinases, yet their functional roles remain poorly understood. In other fish species, chitinases have been primarily linked to digestion, but also to other functions, as chitinase-encoding genes are transcribed in a variety of non-digestive organs. In this study, we investigated the properties of two chitinases belonging to the family 18 glycoside hydrolase (GH18) group, namely Chia.3 and Chia.4, both isolated from the stomach mucosa. Chia.3 and Chia.4, exhibiting 95% sequence identity, proved inseparable using conventional chromatographic methods, necessitating their purification as a chitinase pair. Detailed biochemical analysis revealed sustained chitinolytic activity against β-chitin for up to 24 hours, spanning a pH range of 2 to 6. Moreover, subsequent in vitro investigations established that this chitinase pair efficiently degrades diverse chitin-containing substrates into chitobiose (GlcNAc 2 ), highlighting the potential of Atlantic salmon to utilize novel chitin-containing feed sources. Analysis of the gastric matrix proteome demonstrate that the chitinases are secreted and rank among the most abundant proteins in the gastric matrix. This finding correlates well with the previously observed high transcription of the corresponding chitinase genes in Atlantic salmon stomach tissue. By shedding light on the secreted chitinases in the Atlantic salmon's stomach mucosa and elucidating their functional characteristics, this study enhances our understanding of chitinase biology in this species. Moreover, the observed capacity to effectively degrade chitin-containing materials implies the potential utilization of alternative feed sources rich in chitin, offering promising prospects for sustainable aquaculture practices.