Recent progress of bacterial FtsZ inhibitors with a focus on peptides.
Huihui HanZhenlong WangTing LiDa TengRuoyu MaoYa HaoNa YangXiumin WangJianhua WangPublished in: The FEBS journal (2020)
In recent years, the rise of antibiotic resistance has become a primary health problem. With the emergence of bacterial resistance, the need to explore and develop novel antibacterial drugs has become increasingly urgent. Filamentous temperature-sensitive mutant Z (FtsZ), a crucial cell division protein of bacteria, has become a vital antibacterial target. FtsZ is a filamentous GTPase; it is highly conserved in bacteria and shares less than 20% sequence identity with the eukaryotic cytoskeleton protein tubulin, indicating that FtsZ-targeting antibacterial agents may have a low cytotoxicity toward eukaryotes. FtsZ can form a dynamic Z-ring in the center of the cell resulting in cell division. Furthermore, disturbance in the assembly of FtsZ may affect cellular dynamics and bacterial cell survival, making it a fascinating target for drug development. This review focuses on the recent discovery of FtsZ inhibitors, including peptides, natural products, and other synthetic small molecules, as well as their mechanism of action, which could facilitate the discovery of novel FtsZ-targeting clinical drugs in the future.