Login / Signup

Development of New Photoswitchable Azobenzene Based γ-Aminobutyric Acid (GABA) Uptake Inhibitors with Distinctly Enhanced Potency upon Photoactivation.

Toni LutzThomas WeinGeorg HöfnerJörg PabelMatthias EderJulien DineKlaus T Wanner
Published in: Journal of medicinal chemistry (2018)
A series of nipecotic acid derivatives with new azo benzene based photoswitchable N-substituents was synthesized and characterized in their ( E)- and ( Z)-form for their functional inhibitory activity at γ-aminobutyric acid transporters subtype 1 (GAT1), the most common γ-aminobutyric acid (GABA) transporter subtype in the central nervous system (CNS). This led to the identification of the first photoswitchable ligands exhibiting a moderate uptake inhibition of GABA in their ( E)- but distinctive higher inhibitory potency in their ( Z)-form resulting from photoirradiation. For the most efficient photoactivatable nipecotic acid derivative displaying an N-but-3-yn-1-yl linker with a terminal diphenyldiazene unit, an inhibitory potency of 4.65 ± 0.05 (pIC50) was found for its ( E)-form. which increased by almost two log units up to 6.38 ± 0.04 when irradiated. The effect of this photoswitchable mGAT1 inhibitor has also been evaluated and confirmed in patch-clamp recordings in acute hippocampal slices from mice.
Keyphrases
  • type diabetes
  • blood brain barrier
  • high intensity
  • insulin resistance
  • acute respiratory distress syndrome
  • high fat diet induced