Login / Signup

Cytotoxicity of Silica Nanoparticles with Transcaucasian Nose-Horned Viper, Vipera ammodytes transcaucasiana, Venom on U87MG and SHSY5Y Neuronal Cancer Cells.

Çiğdem ÇelenCeren KeçecilerMert KarışBayram GöçmenOzlem Yesil-CeliktasAyse Nalbantsoy
Published in: Applied biochemistry and biotechnology (2018)
Highly bioactive compounds of the snake venom make them particular sources for anticancer agent development. They contain very rich peptide-protein structures. Therefore, they are very susceptible to environmental conditions such as temperature, pH, and light. In this study, Vipera ammodytes transcaucasiana venom was encapsulated in PAMAM-G4 dendrimer by sol-gel method in order to prevent degradation of venom contents from the environmental conditions. For this purpose, nanoparticles were prepared by sol-gel methodology and SEM analyses were performed. U87MG and SHSY5Y neuronal cancer cell lines were treated with different concentrations of venom-containing nanoparticles and cytotoxicity was determined by MTT assay. IC50 values of nanoparticles with snake venom were calculated as 37.24 and 44.64 μg/ml for U87MG and SHSY5Y cells, respectively. The IC50 values of nanoparticles with snake venom were calculated as 10.07 and 7.9 μg/ml for U87MG and SHSY5Y cells, respectively. As a result, nanoparticles with V. a. transcaucasiana venom showed remarkably high cytotoxicity. Encapsulation efficiency of nanoparticles with 1 mg/ml snake venom was determined as %67 via BCA™ protein analysis. In conclusion, this method is found to be convenient and useful for encapsulating snake venom as well as being suitable for drug delivery systems.
Keyphrases
  • squamous cell carcinoma
  • cell cycle arrest
  • risk assessment
  • cell proliferation
  • small molecule
  • high resolution
  • human health
  • protein protein
  • climate change
  • cerebral ischemia