New Insights into High-Performance Nanocomposite Membranes with Threefold-Imprinted Layers for Selective Recognition and Separation.
Ming YanHangtao FeiJingjing ZhenFan JiangYilin WuPublished in: Langmuir : the ACS journal of surfaces and colloids (2022)
Herein, we reported on mixed-matrix membranes with polydopamine (PDA)-based threefold-imprinted layers (MMMs-PTIs), in which the dopamine molecules were simultaneously regarded as functional monomers and cross-linking agents during the first-in-class ternary-PDA-based imprinted method. Threefold-ibuprofen-imprinted layers were constructed into and onto the MMMs-PTIs through the phase inversion process, followed by suction filtration strategy, in which the PDA-based ibuprofen-imprinted activated carbon (AC)/SiO 2 and TiO 2 /GO were chosen as fillers. Based on the threefold-imprinted SiO 2 /AC and polymer and TiO 2 /GO-loaded structure, rebinding capacities and permselectivity of MMMs-PTIs had been successfully enhanced, and the selective recognition and separation mechanism had been finally evaluated based on the static adsorption/permeation results. Both high rebinding capacity (53.22 mg/g) and adsorption selectivity (α > 2.0) had been achieved. Importantly, as to the permselectivity performance of MMMs-PTIs toward different compounds, the ibuprofen-permeation efficiencies (β value) of MMMs-PTIs reached 4.07, 4.08, and 3.77, respectively. That is to say, remarkable and stable permselectivity performance could be obtained, which demonstrated the successful preparation of good recognizability and permeability toward ibuprofen.