Login / Signup

Mutations in PB1, NP, HA, and NA Contribute to Increased Virus Fitness of H5N2 Highly Pathogenic Avian Influenza Virus Clade 2.3.4.4 in Chickens.

Sung-Su YoukChristina M LeysonBrittany A SeibertSamadhan JadhaoDaniel R PerezDavid L SuarezMary J Pantin-Jackwood
Published in: Journal of virology (2020)
The H5N8 highly pathogenic avian influenza (HPAI) clade 2.3.4.4 virus spread to North America by wild birds and reassorted to generate the H5N2 HPAI virus that caused the poultry outbreak in the United States in 2015. In previous studies, we showed that H5N2 viruses isolated from poultry in the later stages of the outbreak had higher infectivity and transmissibility in chickens than the wild bird index H5N2 virus. Here, we determined the genetic changes that contributed to the difference in host virus fitness by analyzing sequence data from all of the viruses detected during the H5N2 outbreak, and studying the pathogenicity of reassortant viruses generated with the index wild bird virus and a chicken virus from later in the outbreak. Viruses with the wild bird virus backbone and either PB1, NP, or the entire polymerase complex of the chicken isolate, caused higher and earlier mortality in chickens, with three mutations (PB1 E180D, M317V, and NP I109T) identified to increase polymerase activity in chicken cells. The reassortant virus with the HA and NA from the chicken virus, where mutations in functionally known gene regions were acquired as the virus circulated in turkeys (HA S141P and NA S416G) and later in chickens (HA M66I, L322Q), showed faster virus growth, bigger plaque size and enhanced heat persistence in vitro, and increased pathogenicity and transmissibility in chickens. Collectively, these findings demonstrate an evolutionary pathway in which a HPAI virus from wild birds can accumulate genetic changes to increase fitness in poultry.IMPORTANCE H5Nx highly pathogenic avian influenza (HPAI) viruses of the A/goose/Guangdong/1/96 lineage continue to circulate widely affecting both poultry and wild birds. These viruses continue to change and reassort, which affects their fitness to different avian hosts. In this study, we defined mutations associated with increased virus fitness in chickens as the clade 2.3.4.4. H5N2 HPAI virus circulated in different avian species. We identified mutations in the PB1, NP, HA, and NA virus proteins that were highly conserved in the poultry isolates and contributed to the adaptation of this virus in chickens. This knowledge is important for understanding the epidemiology of H5Nx HPAI viruses and specifically the changes related to adaptation of these viruses in poultry.
Keyphrases