Login / Signup

The accessory protein TagV is required for full Type VI secretion system activity in Serratia marcescens.

Mark ReglinskiLaura MonlezunSarah J Coulthurst
Published in: Molecular microbiology (2023)
The bacterial Type VI secretion system (T6SS) is a dynamic macromolecular structure that promotes inter- and intra-species competition through the delivery of toxic effector proteins into neighbouring cells. The T6SS contains 14 well-characterised core proteins necessary for effector delivery (TssA-M, PAAR). In this study, we have identified a novel accessory component required for optimal T6SS activity in the opportunistic pathogen Serratia marcescens, which we name TagV. Deletion of tagV, which encodes an outer membrane lipoprotein, caused a reduction in the T6SS-dependent antibacterial activity of S. marcescens Db10. Mutants of S. marcescens lacking the core component TssJ, a distinct outer membrane lipoprotein previously considered essential for T6SS firing, retained a modest T6SS activity that could be abolished through deletion of tagV. TagV did not interact with the T6SS membrane complex proteins TssL or TssM, but is proposed to bind to peptidoglycan, indicating that the mechanism by which TagV promotes T6SS firing differs from that of TssJ. Homologues of tagV were identified in several other bacterial genera, suggesting that the accessory function of TagV is not restricted to S. marcescens. Together, our findings support the existence of a second, TssJ-independent mechanism for T6SS firing that is dependent upon the activity of TagV proteins.
Keyphrases
  • small molecule
  • oxidative stress
  • cell death
  • signaling pathway
  • endoplasmic reticulum stress
  • type iii
  • protein protein
  • genetic diversity