Folded Perylene Diimide Loops as Mechanoresponsive Motifs.
Hanna TraegerYoshimitsu SagaraDerek J KiebalaStephen SchrettlChristoph WederPublished in: Angewandte Chemie (International ed. in English) (2021)
A supramolecular mechanophore that can be integrated into polymers and indicates deformation by a fluorescence color change is reported. Two perylene diimides (PDIs) were connected by a short spacer and equipped with peripheral atom transfer polymerization initiators. In the idle state, the motif folds into a loop and its emission is excimer dominated. Poly(methyl acrylate) (PMA) chains were grown from the motif and the mechanophore-containing polymer was blended with unmodified PMA to afford materials that display a visually discernible fluorescence color change upon deformation, which causes the loops to unfold. The response is instant, and correlates linearly with the applied strain. Experiments with a reference polymer containing only one PDI moiety show that looped mechanophores that display intramolecular excimer formation offer considerable advantages over intermolecular dye aggregates, including a concentration-independent response, direct signaling of mechanical processes, and a more pronounced optical change.