Use of pH-Active Catechol-Bearing Polymeric Nanogels with Glutathione-Responsive Dissociation to Codeliver Bortezomib and Doxorubicin for the Synergistic Therapy of Cancer.
Yudian QiuJie BaiYecheng FengXiaojing ShiXubo ZhaoPublished in: ACS applied materials & interfaces (2021)
Synergistic therapy holds promising potential in cancer treatment. Here, the inclusion of catechol moieties, a disulfide cross-linked structure, and pendent carboxyl into the network of polymeric nanogels with glutathione (GSH)-responsive dissociation and pH-sensitive release is first disclosed for the codelivery of doxorubicin (DOX) and bortezomib (BTZ) in synergistic cancer therapy. The pendent carboxyl groups and catechol moieties are exploited to absorb DOX through electrostatic interaction and conjugate BTZ through boronate ester, respectively. Both electrostatic interactions and boronate ester are stable at neutral or alkaline pH, while they are instable in an acidic environment to further recover the activities of BTZ and DOX. The polymeric nanogels possess a superior stability to prevent the premature leakage of drugs in a physiological environment, while their structure is destroyed in response to a typical endogenous stimulus (GSH) to unload drugs. The dissociation of the drug-loaded nanogels accelerates the intracellular release of DOX and BTZ and further enhances the therapeutic efficacy. In vitro and in vivo investigations revealed that the dual-drug loaded polymeric nanogels exhibited a strong ability to suppress tumor growth. This study thus proposes a new perspective on the production of multifunctional polymeric nanogels through the introduction of different functional monomers.
Keyphrases
- cancer therapy
- drug delivery
- multiple myeloma
- drug release
- electron transfer
- emergency department
- drug induced
- molecular dynamics simulations
- papillary thyroid
- newly diagnosed
- squamous cell carcinoma
- single cell
- fluorescent probe
- human health
- anaerobic digestion
- electronic health record
- lymph node metastasis
- reactive oxygen species
- childhood cancer