Login / Signup

Prediction of Mercury Elimination Rate Coefficients of Fish is Improved by Incorporating Fish Temperature Classification into Models.

Shifeng YaoAnn-Tenneil O'Connor
Published in: Bulletin of environmental contamination and toxicology (2019)
This study evaluated the dependence of mercury (Hg) elimination by fish on species specific fish metabolic rate in order to generate improved algorithms of Hg elimination rate coefficients. Mercury elimination rate coefficient observations were collected by literature review and fish routine metabolic rate (RMR) estimates calculated using the Wisconsin Fish Bioenergetics Model. Three models were compared that considered body weight, temperature, thermal category, Hg depuration period and RMR as predictors of Hg elimination. The best performing model incorporated body size, temperature and fish thermal category, explaining 79% of the variation of the calibration data and between 20% and 69% of the variation of validation data sets. The results support the conclusion that species-specific differences in metabolic rate influence mercury elimination by fish but also highlight major data gaps in the mercury toxicokinetic literature necessary to develop robust models Hg elimination by fish.
Keyphrases