Uterine uptake of estrogen and progestogen-based radiotracers in rhesus macaques with endometriosis.
Rachel Catharine WilsonJeanne M LinkYueh Z LeeJorge D OldanSteven L YoungOv D SlaydenPublished in: Research square (2023)
Purpose Few investigations have examined the uptake of radiotracers that target the prominent sex-steroid receptors in the uterus across the menstrual cycle and with disease state. We aimed to determine if uptake of the radiotracers that target estrogen and progesterone receptors (ER and PR) differ with the presence of endometriosis and/or across the menstrual cycle. We performed PET and computed tomography (CT) imaging procedures on rhesus macaques ( Macaca mulatta) using 16α-[18F]fluoroestradiol (FES) and 21-[18F]fluoro-furanyl-nor-progesterone (FFNP) in individuals with and without endometriosis in the proliferative and secretory phases of the menstrual cycle. Procedures Macaques with either clinically diagnosed endometriosis (n = 6) or no endometriosis (n = 4) underwent abdominopelvic PET/CT scans with FES. A subset of these animals also underwent PET/CT scans with FFNP. Standard uptake values corrected for body weight (SUVbw) were obtained for each radiotracer in target and background tissues (i.e., intestinal and muscle). We performed repeated measure analysis of variance tests to determine how uterine and background uptake differed with scan time, phase of the menstrual cycle, and disease state. Results PET/CT could not resolve small, individual endometriotic lesions. However, uterine uptake of both radiotracers was elevated in the proliferative phase compared to the secretory phase of the menstrual cycle. Intestinal uptake exhibited greater variation during the proliferative phase compared to the secretory phase. Further, intestinal uptake of FFNP increases as the scan progresses, but only during the proliferative phase. Muscle uptake did not differ with menstrual phase or radiotracer type. Lastly, macaques with endometriosis displayed higher uterine uptake of FES compared to those without endometriosis. Conclusions PET/CT with FES and FFNP support the concept that ER and PR levels are altered in individuals with endometriosis. This highlights the impact of the disease on typical reproductive tract function and may provide a novel pathway for the identification of individuals with endometriosis.