Natural Compound Allicin Containing Thiosulfinate Moieties as Transmembrane Protein 16A (TMEM16A) Ion Channel Inhibitor for Food Adjuvant Therapy of Lung Cancer.
Xue BaiYana ChengHaifu WanShuting LiXianjiang KangShuai GuoPublished in: Journal of agricultural and food chemistry (2022)
Cancer is one of the most serious malignant diseases, and chemotherapy is cancer's main clinical treatment method. However, chemotherapy inevitably produces drug resistance, and side effects accompany them. Adjuvant therapy is an effective way to enhance chemotherapeutic drug sensitivity and reduce side effects. This study found allicin, garlic's active ingredient, is an inhibitor of transmembrane protein 16A (TMEM16A), a novel drug target of lung adenocarcinoma. Allicin concentration-dependently inhibited TMEM16A currents with an IC 50 of 24.35 ± 4.14 μM. Allicin thiosulfinate moieties bound with R535A/E624A/E633A residues of TMEM16A blocked the ion transport function and downregulated TMEM16A protein expression affecting the mitogen-activated protein kinase signal transduction. Then, allicin reduced the viability and migration of LA795 cells, and induced cell apoptosis. Moreover, multitarget combination administration results indicated that the therapeutic effect of 3.56 mg/kg allicin and 3 mg/kg cisplatin combined administration was superior to the superposition of the two drugs alone, demonstrating that the anticancer effects of allicin and cisplatin were synergistic. In addition, low-concentration combined administration also avoided the side effects of cisplatin in mice. Based on the good tumor suppressor effect and high biosafety of allicin and cisplatin combination in vivo, allicin can be used for food adjuvant therapy of cisplatin chemotherapy.
Keyphrases
- papillary thyroid
- locally advanced
- induced apoptosis
- squamous cell
- emergency department
- drug induced
- metabolic syndrome
- type diabetes
- amino acid
- cell death
- skeletal muscle
- insulin resistance
- binding protein
- tyrosine kinase
- cancer therapy
- human health
- cell cycle arrest
- climate change
- combination therapy
- replacement therapy