Login / Signup

Structure of the core oligosaccharide of a rough-type lipopolysaccharide of Pseudomonas syringae pv. phaseolicola.

Evelina L ZdorovenkoEvgeny VinogradovGalina M ZdorovenkoBuko LindnerOlga V BystrovaAlexander S ShashkovKlaus RudolphUlrich ZähringerYuriy A Knirel
Published in: European journal of biochemistry (2005)
The core structure of the lipopolysaccharide (LPS) isolated from a rough strain of the phytopathogenic bacterium Pseudomonas syringae pv. phaseolicola, GSPB 711, was investigated by sugar and methylation analyses, Fourier transform ion-cyclotron resonance ESI MS, and one- and two-dimensional 1H-, 13C- and 31P-NMR spectroscopy. Strong alkaline deacylation of the LPS resulted in two core-lipid A backbone undecasaccharide pentakisphosphates in the ratio approximately 2.5 : 1, which corresponded to outer core glycoforms 1 and 2 terminated with either L-rhamnose or 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo), respectively. Mild acid degradation of the LPS gave the major glycoform 1 core octasaccharide and a minor truncated glycoform 2 core heptasaccharide, which resulted from the cleavage of the terminal Kdo residues. The inner core of P. syringae is distinguished by a high degree of phosphorylation of L-glycero-D-manno-heptose residues with phosphate, diphosphate and ethanolamine diphosphate groups. The glycoform 1 core is structurally similar but not identical to one of the core glycoforms of the human pathogenic bacterium Pseudomonas aeruginosa. The outer core composition and structure may be useful as a chemotaxonomic marker for the P. syringae group of bacteria, whereas a more conserved inner core structure appears to be representative for the whole genus Pseudomonas.
Keyphrases