Fluoride export is required for competitive fitness of pathogenic microorganisms in dental biofilm models.
Aditya BanerjeeChia-Yu KangMinjun AnB Ben KoffSham SunderAnuj KumarLivia M A TenutaRandy B StockbridgePublished in: bioRxiv : the preprint server for biology (2024)
Microorganisms resist fluoride toxicity using fluoride export proteins from one of several different molecular families. Cariogenic species Streptococcus mutans and Candida albicans extrude intracellular fluoride using a CLC F F - /H + antiporter and FEX fluoride channel, respectively, whereas commensal eubacteria, such as Streptococcus gordonii , export fluoride using a Fluc fluoride channel. In this work, we examine how genetic knockout of fluoride export impacts pathogen fitness in single-species and three-species dental biofilm models. For biofilms generated using S. mutans with genetic knockout of the CLC F transporter, exposure to low fluoride concentrations decreased S. mutans counts, synergistically reduced the populations of C. albicans , increased the relative proportion of commensal S. gordonii , and reduced properties associated with biofilm pathogenicity, including acid production and hydroxyapatite dissolution. Biofilms prepared with C. albicans with genetic knockout of the FEX channel also exhibited reduced fitness in the presence of fluoride, but to a lesser degree. Imaging studies indicate that S. mutans is highly sensitive to fluoride, with the knockout strain undergoing complete lysis when exposed to low fluoride for a moderate amount of time, and biochemical purification the S. mutans CLC F transporter and functional reconstitution establishes that the functional protein is a dimer encoded by a single gene. Together, these findings suggest that fluoride export by oral pathogens can be targeted by specific inhibitors to restore biofilm symbiosis in dental biofilms, and that S. mutans is especially susceptible to fluoride toxicity.
Keyphrases
- candida albicans
- biofilm formation
- drinking water
- pseudomonas aeruginosa
- physical activity
- body composition
- staphylococcus aureus
- copy number
- genome wide
- escherichia coli
- drug delivery
- transcription factor
- mass spectrometry
- high resolution
- oral health
- cancer therapy
- fluorescence imaging
- single molecule
- living cells
- binding protein
- tandem mass spectrometry
- peripheral blood
- molecularly imprinted
- fluorescent probe
- bone regeneration