Login / Signup

Self-Assembly through Noncovalent Preorganization of Reactants: Explaining the Formation of a Polyfluoroxometalate.

Roy E SchreiberLiat AvramRonny Neumann
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2017)
High-order elementary reactions in homogeneous solutions involving more than two molecules are statistically improbable and very slow to proceed. They are not generally considered in classical transition-state or collision theories. Yet, rather selective, high-yield product formation is common in self-assembly processes that require many reaction steps. On the basis of recent observations of crystallization as well as reactions in dense phases, it is shown that self-assembly can occur by preorganization of reactants in a noncovalent supramolecular assembly, whereby directing forces can lead to an apparent one-step transformation of multiple reactants. A simple and general kinetic model for multiple reactant transformation in a dense phase that can account for many-bodied transformations was developed. Furthermore, the self-assembly of polyfluoroxometalate anion [H2 F6 NaW18 O56 ]7- from simple tungstate Na2 WO2 F4 was demonstrated by using 2D 19 F-19 F NOESY, 2D 19 F-19 F COSY NMR spectroscopy, a new 2D 19 F{183 W} NMR technique, as well as ESI-MS and diffusion NMR spectroscopy, and the crucial involvement of a supramolecular assembly was found. The deterministic kinetic reaction model explains the reaction in a dense phase and supports the suggested self-assembly mechanism. Reactions in dense phases may be of general importance in understanding other self-assembly reactions.
Keyphrases
  • ms ms
  • magnetic resonance
  • multiple sclerosis
  • mass spectrometry
  • high resolution
  • computed tomography
  • ionic liquid
  • electron transfer
  • water soluble
  • solid state
  • contrast enhanced