When performing spatial regression analysis in environmental data applications, spatial heterogeneity in the regression coefficients is often observed. Spatially varying coefficient models, including geographically weighted regression and spline models, are standard tools for quantifying such heterogeneity. In this paper, we propose a spatially varying coefficient model that represents the spatially varying parameters as a mixture of local polynomials at selected locations. The local polynomial parameters have attractive interpretations, indicating various types of spatial heterogeneity. Instead of estimating the spatially varying regression coefficients directly, we develop a penalized least squares regression procedure for the local polynomial parameter estimation, which both shrinks the parameter estimation and penalizes the differences among parameters that are associated with neighboring locations. We develop confidence intervals for the varying regression coefficients and prediction intervals for the response. We apply the proposed method to characterize the spatially varying association between particulate matter concentrations ( PM 2.5 ) and pollutant gases related to the secondary aerosol formulation in China. The identified regression coefficients show distinct spatial patterns for nitrogen dioxide, sulfur dioxide, and carbon monoxide during different seasons.