The cuff of endotracheal tube (ETT) is an indispensable device for establishing an artificial airway, yet cuff-induced compression often causes damage to the airway mucosa. The mechanism of this damage involves mucosal compression ischemia and the oxidative stress injury following reperfusion. Currently, there is a lack of effective strategies to protect the mucosa. Hydrogen, as a natural antioxidant, has demonstrated significant potential in the prevention and treatment of oxidative stress injuries. This study aimed to determine the protective effects of hydrogen on compressed airway mucosa. We found that the damage to the airway mucosa caused by ETT cuff compression was associated with oxidative stress-induced pyroptosis of airway epithelial cells. Inhalation of hydrogen effectively reduced the levels of reactive oxygen species, significantly ameliorating changes in epithelial cell pyroptosis, and this protective effect is linked to the inhibition of the NLRP3-GSDMD pathway. Further cellular studies, involving knockdown and overexpression of NLRP3, clarified that hydrogen exerts its protective effects on the airway mucosa by inhibiting epithelial cell pyroptosis. Additionally, we observed that using hydrogen-rich saline to inflate the ETT cuff in patients under general anesthesia significantly reduced postoperative sore throat. This study confirms that hydrogen effectively enhances tolerance of airway mucosa to oxidative stress injuries, offering a potential preventive and therapeutic strategy for protecting the airway mucosa in patients undergoing endotracheal intubation.
Keyphrases
- oxidative stress
- diabetic rats
- patients undergoing
- dna damage
- ischemia reperfusion injury
- end stage renal disease
- transcription factor
- ejection fraction
- chronic kidney disease
- acute myocardial infarction
- blood brain barrier
- visible light
- heart failure
- prognostic factors
- risk assessment
- signaling pathway
- coronary artery disease
- climate change
- acute coronary syndrome
- percutaneous coronary intervention
- drug induced
- combination therapy