Login / Signup

Physiological Synchrony Predict Task Performance and Negative Emotional State during a Three-Member Collaborative Task.

Mohammed AlgumaeiImali HettiarachchiRakesh VeerabhadrappaAsim Bhatti
Published in: Sensors (Basel, Switzerland) (2023)
Evaluation of team performance in naturalistic contexts has gained popularity during the last two decades. Among other human factors, physiological synchrony has been adopted to investigate team performance and emotional state when engaged in collaborative team tasks. A variety of methods have been reported to quantify physiological synchrony with a varying degree of correlation with the collaborative team task performance and emotional state, reflected in the inconclusive nature of findings. Little is known about the effect of the choice of synchrony calculation methods and the level of analysis on these findings. In this research work, we investigate the relationship between outcomes of different methods to quantify physiological synchrony, emotional state, and team performance of three-member teams performing a collaborative team task. The proposed research work employs dyadic-level linear (cross-correlation) and team-level non-linear (multidimensional recurrence quantification analysis) synchrony calculation measures to quantify task performance and the emotional state of the team. Our investigation indicates that the physiological synchrony estimated using multidimensional recurrence quantification analysis revealed a significant negative relationship between the subjectively reported frustration levels and overall task performance. However, no relationship was found between cross-correlation-based physiological synchrony and task performance. The proposed research highlights that the method of choice for physiological synchrony calculation has direct impact on the derived relationship of team task performance and emotional states.
Keyphrases
  • quality improvement
  • palliative care
  • endothelial cells
  • adipose tissue
  • single cell
  • psychometric properties