Login / Signup

Transforming stealthy to sticky nanocarriers: a potential application for tumor therapy.

Alidha GafurNatalia KristiAli MarufGui-Xue WangZhiyi Ye
Published in: Biomaterials science (2019)
Nanomedicine has shown remarkable progress in preclinical studies of tumor treatment. Over the past decade, scientists have developed various nanocarriers (NCs) for delivering drugs into the tumor area. However, the average amount of accumulated drugs in tumor sites is far from satisfactory. This limitation is strongly related to the corona formation during blood circulation. To overcome this issue, NCs should be designed to become highly stealthy by modifying their surface charge. However, at the same time, stealthy effects not only prevent protein formation but also alleviate the cellular uptake of NCs. Therefore, it is necessary to develop NCs with switchable properties, which are stealthy in the circulation system and sticky when arriving at tumor sites. In this review, we discuss the recent strategies to develop passive and active charge-switchable NCs, known as chameleon-like drug delivery systems, which can reversibly transform their surface from stealthy to sticky and have various designs.
Keyphrases
  • drug delivery
  • cancer therapy
  • risk assessment