Influenza M2 virus-like particle vaccination enhances protection in combination with avian influenza HA VLPs.
Hae-Ji KangKi-Back ChuDong-Hun LeeSu-Hwa LeeBo Ryoung ParkMin-Chul KimSang-Moo KangFu-Shi QuanPublished in: PloS one (2019)
Despite the ability to induce a broad range of cross protection, M2e5x virus-like particles (VLPs) alone provide limited vaccine efficacy and confer low efficacy of protection against highly pathogenic avian influenza virus (HPAIV) infection in chickens. Avian influenza hemagglutinin (HA) has been a major antigenic target that enhances humoral immunity, but the efficacy of avian HA-based vaccines against HPAIV needs to be further improved. In this study, we evaluated the vaccine efficacy induced by combination of conserved tandem repeat M2e5x VLPs and HA VLPs against an avian influenza virus. We found that combinatorial vaccine elicited higher levels of reassortant H5N1 (rgH5N1) virus-specific IgG, IgG1, IgG2a and IgA antibody responses compared to M2e5x VLPs in sera and lungs of mice. Combinatorial VLPs vaccination induced higher levels of CD8+ T cell and germinal center B cell responses in lung and spleen compared to M2e5x VLPs. Combinatorial VLPs vaccination showed significantly reduced inflammatory responses and lung viral loads upon rgH5N1 virus challenge infection, resulting in less body weight loss compared to M2e5x VLPs alone. These results indicate that immune responses to both M2e and HA might provide a strategy of vaccination inducing enhanced protection against avian influenza virus.