Login / Signup

Highly tunable properties in pressure-treated two-dimensional Dion-Jacobson perovskites.

Lingping KongGang LiuJue GongLingling MaoMengting ChenQingyang HuXujie LüWenge YangMercouri G KanatzidisHo-Kwang Mao
Published in: Proceedings of the National Academy of Sciences of the United States of America (2020)
The application of pressure can achieve novel structures and exotic phenomena in condensed matters. However, such pressure-induced transformations are generally reversible and useless for engineering materials for ambient-environment applications. Here, we report comprehensive high-pressure investigations on a series of Dion-Jacobson (D-J) perovskites A'A n-1Pb n I3n+1 [A' = 3-(aminomethyl) piperidinium (3AMP), A = methylammonium (MA), n = 1, 2, 4]. Our study demonstrates their irreversible behavior, which suggests pressure/strain engineering could viably improve light-absorber material not only in situ but also ex situ, thus potentially fostering the development of optoelectronic and electroluminescent materials. We discovered that the photoluminescence (PL) intensities are remarkably enhanced by one order of magnitude at mild pressures. Also, higher pressure significantly changes the lattices, boundary conditions of electronic wave functions, and possibly leads to semiconductor-metal transitions. For (3AMP)(MA)3Pb4I13, permanent recrystallization from 2D to three-dimensional (3D) structure occurs upon decompression, with dramatic changes in optical properties.
Keyphrases
  • heavy metals
  • air pollution
  • protein kinase
  • quantum dots
  • oxidative stress
  • ionic liquid
  • newly diagnosed
  • stress induced