Login / Signup

BATF2 prevents glioblastoma multiforme progression by inhibiting recruitment of myeloid-derived suppressor cells.

Xin ZhangYi LiuLei DaiGang ShiJie DengQiang LuoQian XieLin ChengChunlei LiYi LinQingnan WangPing FanHantao ZhangXiaolan SuShuang ZhangYang YangXun HuQi-Yong GongDechao YuLei ZhengHongxin Deng
Published in: Oncogene (2021)
The basic leucine zipper ATF-like transcription factor 2 (BATF2) has been implicated in inflammatory responses and anti-tumour effects. Little, however, is known regarding its extracellular role in maintaining a non-supportive cancer microenvironment. Here, we show that BATF2 inhibits glioma growth and myeloid-derived suppressor cells (MDSCs) recruitment. Interestingly, extracellular vesicles (EVs) from BATF2-overexpressing glioma cell lines (BATF2-EVs) inhibited MDSCs chemotaxis in vitro. Moreover, BATF2 inhibited intracellular SDF-1α and contributes to decreased SDF-1α in EVs. In addition, BATF2 downregulation-induced MDSCs recruitment were reversed by blocking SDF-1α/CXCR4 signalling upon AMD3100 treatment. Specifically, detection of EVs in 24 pairs of gliomas and healthy donors at different stages revealed that the abundance of BATF2-positive EVs in plasma (BATF2+ plEVs) can distinguish stage III-IV glioma from stage I-II glioma and healthy donors. Taken together, our study identified novel regulatory functions of BATF2 in regulating MDSCs recruitment, providing a prognostic value in terms of the number of BATF2+ plEVs in glioma stage.
Keyphrases