Login / Signup

Quantum and Quantum-Classical Studies of the Photoisomerization of a Retinal Chromophore Model.

Emanuele MarsiliMassimo OlivucciDavid LauvergnatFederica Agostini
Published in: Journal of chemical theory and computation (2020)
We report an in-depth analysis of the photo-induced isomerization of the 2-cis-penta-2,4-dieniminium cation: a minimal model of the 11-cis retinal protonated Schiff base chromophore of the dim-light photoreceptor rhodopsin. Based on recently developed three-dimensional potentials parametrized on ab initio multi-state multi-configurational second-order perturbation theory data, we perform quantum-dynamical studies. In addition, simulations based on various quantum-classical methods, among which Tully surface hopping and the coupled-trajectory approach derived from the exact factorization, allow us to validate their performance against vibronic wavepacket propagation and, therefore, a purely quantum treatment. Quantum-dynamics results uncover qualitative differences with respect to the two-dimensional Hahn-Stock potentials, widely used as model potentials for the isomerization of the same chromophore, due to the increased dimensionality and three-mode correlation. Quantum-classical simulations show, instead, that three-dimensional model potentials are capable of capturing a number of features revealed by atomistic simulations and experimental observations. In particular, a recently reported vibrational phase relationship between double-bond torsion and hydrogen-out-of-plane modes critical for rhodopsin isomerization efficiency is correctly reproduced.
Keyphrases
  • molecular dynamics
  • density functional theory
  • monte carlo
  • energy transfer
  • optical coherence tomography
  • diabetic retinopathy
  • systematic review
  • deep learning
  • quantum dots