Login / Signup

Venomics of the Central European Myrmicine Ants Myrmica rubra and Myrmica ruginodis .

Sabine HurkaKarina BrinkrolfRabia ÖzbekFrank FörsterAndré BillionJohn HeepThomas TimmGuenter LochnitAndreas VilcinskasTim Lüddecke
Published in: Toxins (2022)
Animal venoms are a rich source of novel biomolecules with potential applications in medicine and agriculture. Ants are one of the most species-rich lineages of venomous animals. However, only a fraction of their biodiversity has been studied so far. Here, we investigated the venom components of two myrmicine (subfamily Myrmicinae) ants: Myrmica rubra and Myrmica ruginodis . We applied a venomics workflow based on proteotranscriptomics and found that the venoms of both species are composed of several protein classes, including venom serine proteases, cysteine-rich secretory protein, antigen 5 and pathogenesis-related 1 (CAP) superfamily proteins, Kunitz-type serine protease inhibitors and venom acid phosphatases. Several of these protein classes are known venom allergens, and for the first time we detected phospholipase A1 in the venom of M. ruginodis . We also identified two novel epidermal growth factor (EGF) family toxins in the M. ruginodis venom proteome and an array of additional EGF-like toxins in the venom gland transcriptomes of both species. These are similar to known toxins from the related myrmicine ant, Manica rubida , and the myrmecine (subfamily Myrmeciinae) Australian red bulldog ant Myrmecia gullosa , and are possibly deployed as weapons in defensive scenarios or to subdue prey. Our work suggests that M. rubra and M. ruginodis venoms contain many enzymes and other high-molecular-weight proteins that cause cell damage. Nevertheless, the presence of EGF-like toxins suggests that myrmicine ants have also recruited smaller peptide components into their venom arsenal. Although little is known about the bioactivity and function of EGF-like toxins, their presence in myrmicine and myrmecine ants suggests they play a key role in the venom systems of the superfamily Formicoidea. Our work adds to the emerging picture of ant venoms as a source of novel bioactive molecules and highlights the need to incorporate such taxa in future venom bioprospecting programs.
Keyphrases
  • growth factor
  • single cell
  • climate change
  • oxidative stress
  • amino acid
  • risk assessment
  • high resolution
  • mesenchymal stem cells
  • current status
  • living cells
  • fluorescent probe