Login / Signup

Laser-Induced Single-Molecule Extraction and Detection in Aqueous Poly(N-isopropylacrylamide)/1-Butanol Solutions.

Atsushi MiuraRiku NoharaAzumi NojimaNoboru Kitamura
Published in: Analytical chemistry (2021)
We report photothermal phase separation of aqueous poly(N-isopropylacrylamide) (PNIPAM)/1-butanol (BuOH) solutions by focused 1064 nm laser irradiation and subsequent single microparticle formation in the solution. The single microparticle [diameter = ∼10 μm and volume = ∼picoliter (pL)] produced by laser irradiation was optically trapped by the incident 1064 nm laser beam, and this enabled us in situ Raman/fluorescence microspectroscopies of the particle. Raman spectroscopy demonstrated that the particle produced by laser irradiation was composed of PNIPAM and BuOH. In the presence of rhodamine B (RhB) in the solution, RhB was distributed from the water phase to the PNIPAM/BuOH microparticle produced by laser irradiation, as confirmed by fluorescence microspectroscopy. Laser-induced distribution/extraction of RhB to a single PNIPAM/BuOH microparticle was shown to be possible at the RhB concentration as low as 10-14 mol/dm3, where the RhB fluorescence intensity from the particle showed a step-by-step increase by every ∼3 min laser irradiation. This is the first demonstration of laser-induced simultaneous extraction and detection of single RhB molecules in solution.
Keyphrases