Login / Signup

Preparation of Highly Active Monometallic Rhenium Catalysts for Selective Synthesis of 1,4-Butanediol from 1,4-Anhydroerythritol.

Tianmiao WangMasazumi TamuraYoshinao NakagawaKeiichi Tomishige
Published in: ChemSusChem (2019)
1,4-Butanediol can be produced from 1,4-anhydroerythritol through the co-catalysis of monometallic mixed catalysts (ReOx /CeO2 +ReOx /C) in the one-pot reduction with H2 . The highest yield of 1,4-butanediol was over 80 %, which is similar to the value obtained over ReOx -Au/CeO2 +ReOx /C catalysts. Mixed catalysts of CeO2 +ReOx /C showed almost the same performance, giving 89 % yield of 1,4-butanediol. The reactivity trends of possible intermediates suggest that the reaction mechanism over ReOx /CeO2 +ReOx /C is similar to that over ReOx -Au/CeO2 +ReOx /C: deoxydehydration (DODH) of 1,4-anhydroerythritol to 2,5-dihydrofuran over ReOx species on the CeO2 support with the promotion of H2 activation by ReOx /C, isomerization of 2,5-dihydrofuran to 2,3-dihydrofuran catalyzed by ReOx on the C support, hydration of 2,3-dihydrofuran catalyzed by C, and hydrogenation to 1,4-butanediol catalyzed by ReOx /C. The reaction order of conversion of 1,4-anhydroerythritol with respect to H2 pressure is almost zero and this indicates that the rate-determining step is the formation of 2,5-dihydrofuran from the coordinated substrate with reduced Re in the DODH step. The activity of ReOx /CeO2 +ReOx /C is higher than that of ReOx -Au/CeO2 +ReOx /C, which is probably related to the reducibility of ReOx /C and the mobility of the Re species between the supports. High-valent Re species such as Re7+ on the CeO2 and C supports are mobile in the solvent; however, low-valent Re species, including metallic Re species, have much lower mobility. Metallic Re and cationic low-valent Re species with high reducibility and low mobility can be present on the carbon support as a trigger for H2 activation and promoter of the reduction of Re species on CeO2 . The presence of noble metals such as Au can enhance the reducibility through the activation of H2 molecules on the noble metal and the formation of spilt-over hydrogen over noble metal/CeO2 , as indicated by H2 temperature-programmed reduction. The higher reducibility of ReOx -Au/CeO2 lowers the DODH activity of ReOx -Au/CeO2 +ReOx /C in comparison with ReOx /CeO2 +ReOx /C by restricting the movement of Re species from C to CeO2 .
Keyphrases
  • sensitive detection
  • room temperature
  • high resolution
  • ionic liquid
  • health risk
  • molecularly imprinted
  • simultaneous determination
  • solid phase extraction