All-perovskite tandem solar cells: from fundamentals to technological progress.
Jaekeun LimNam Gyu ParkSang Il SeokMichael SalibaPublished in: Energy & environmental science (2024)
Organic-inorganic perovskite materials have gradually progressed from single-junction solar cells to tandem (double) or even multi-junction (triple-junction) solar cells as all-perovskite tandem solar cells (APTSCs). Perovskites have numerous advantages: (1) tunable optical bandgaps, (2) low-cost, e.g. via solution-processing, inexpensive precursors, and compatibility with many thin-film processing technologies, (3) scalability and lightweight, and (4) eco-friendliness related to low CO 2 emission. However, APTSCs face challenges regarding stability caused by Sn 2+ oxidation in narrow bandgap perovskites, low performance due to V oc deficit in the wide bandgap range, non-standardisation of charge recombination layers, and challenging thin-film deposition as each layer must be nearly perfectly homogenous. Here, we discuss the fundamentals of APTSCs and technological progress in constructing each layer of the all-perovskite stacks. Furthermore, the theoretical power conversion efficiency (PCE) limitation of APTSCs is discussed using simulations.