Copper-Catalyzed Cross-Nucleophile Coupling of β-Allenyl Silanes with Tertiary C-H Bonds: A Radical Approach to Branched 1,3-Dienes.
Qi-Chao ShanLu-Min HuWei QinXu-Hong HuPublished in: Organic letters (2021)
Described herein is a distinctive approach to branched 1,3-dienes through oxidative coupling of two nucleophilic substrates, β-allenyl silanes, and hydrocarbons appending latent functionality by copper catalysis. Notably, C(sp3)-H dienylation proceeded in a regiospecific manner, even in the presence of competitive C-H bonds that are capable of occurring hydrogen atom transfer process, such as those located at benzylic and other tertiary sites, or adjacent to an oxygen atom. Control experiments support the intermediacy of functionalized alkyl radicals.