Login / Signup

High-Performance Aluminum-Ion Battery with CuS@C Microsphere Composite Cathode.

Shuai WangShuqiang JiaoJunxiang WangHao-Sen ChenDonghua TianHaiping LeiDai-Ning Fang
Published in: ACS nano (2016)
On the basis of low-cost, rich resources, and safety performance, aluminum-ion batteries have been regarded as a promising candidate for next-generation energy storage batteries in large-scale energy applications. A rechargeable aluminum-ion battery has been fabricated based on a 3D hierarchical copper sulfide (CuS) microsphere composed of nanoflakes as cathode material and room-temperature ionic liquid containing AlCl3 and 1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) as electrolyte. The aluminum-ion battery with a microsphere electrode exhibits a high average discharge voltage of ∼1.0 V vs Al/AlCl4-, reversible specific capacity of about 90 mA h g-1 at 20 mA g-1, and good cyclability of nearly 100% Coulombic efficiency after 100 cycles. Such remarkable electrochemical performance is attributed to the well-defined nanostructure of the cathode material facilitating the electron and ion transfer, especially for chloroaluminate ions with large size, which is desirable for aluminum-ion battery applications.
Keyphrases
  • ionic liquid
  • ion batteries
  • room temperature
  • solid state
  • low cost
  • oxide nanoparticles
  • solar cells
  • reduced graphene oxide
  • gold nanoparticles
  • quantum dots
  • electron transfer
  • molecularly imprinted